
Introduction to

Building LLMs

CS229: Machine Learning

Yann Dubois | Aug. 13th 2024

Slides partially based on CS336, CS224N, CS324

LLMs

• LLMs & chatbots took over the world

• How do they work?

2

What matters when training LLMs

3

• Architecture

• Training algorithm/loss

• Data

• Evaluation

• Systems

Most of
academia Transformer

What
matters in
practice

Model

Overview

Pretraining

• Task & loss

Post-training

-> GPT3

-> ChatGPT

5

Language Modeling
• LM: probability distribution over sequences of tokens/words 𝑝 𝑥1, … , 𝑥𝐿

P(the, mouse, ate, the, cheese) = 0.02

P(the, the, mouse, ate, cheese) = 0.0001

P(the, cheese, ate, the, mouse) = 0.001

• LMs are generative models: x1:L~ 𝑝 𝑥1, … , 𝑥𝐿

• Autoregressive (AR) language models:

𝑝 𝑥1, … , 𝑥𝐿 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2, 𝑥1 …

Syntactic knowledge

Semantic knowledge

No approx: chain rule of probability

=> You only need a model that can predict the next token given past context!

= ෑ

𝑖

𝑝 𝑥𝑖 𝑥1:𝑖−1)

AR Language Models

• Task: predict the next word

• Steps:

1. tokenize

2. forward

3. predict probability of next token

4. sample

5. detokenize

6

She likely prefers

dogs

Model

Inference only 1 2 3

5

7

https://lena-voita.github.io/nlp_course/language_modeling.html#intro

AR Neural Language Models

https://lena-voita.github.io/nlp_course/language_modeling.html

Loss

• Classify next tokens’ index

• => cross-entropy loss

• => maximize text’s log-likelihood

8

https://lena-voita.github.io/nlp_course/language_modeling.html#intro

max ෑ

𝑖

𝑝 𝑥𝑖 𝑥1:𝑖−1) = min − ෍

𝑖

log 𝑝 𝑥𝑖| 𝑥𝑖:𝑖−1 = min ℒ(𝑥𝑖:𝐿)

https://lena-voita.github.io/nlp_course/language_modeling.html

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences (~3 letters)

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

Start with one token per character

Merge common pairs of tokens into a token

Repeat until desired vocab size

9

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size

10

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size

11

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

12

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

13

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

14

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

15

tokenizer:
text to token
index

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

Post-training -> ChatGPT

LLM evaluation: Perplexity
17

• Idea: validation loss

• To be more interpretable: use perplexity

• avg per token (~independent of length)

• Exponentiate => units independent of log base

• Perplexity: between 1 and |Vocab|

• Intuition: number of tokens that you are hesitating between

𝑃𝑃𝐿 𝑥1:𝐿 = 2
1
𝐿

 ℒ(𝑥1:𝐿) = ∏ 𝑝 𝑥𝑖 𝑥1:𝑖−1
−1/𝐿

LLM evaluation: Perplexity
18

Between 2017-2023, models went from ”hesitating” between ~70 tokens to <10 tokens

Perplexity not used anymore for academic benchmark but still important for development

LLM Evaluation: agg. std NLP benchmarks
19

Holistic evaluation of language models (HELM) Huggingface open LLM leaderboard

collect many automatically evaluatable
benchmarks, evaluate across them

LLM Evaluation: agg. std NLP benchmarks
20

• Mix of things that can be “easily”

evaluated

• Typically there is “gold” answer

=> you likelihood of LLM to

predict that vs other options

HELM-lite
[Liang+ 2022]

LLM Evaluation: eg MMLU
21

• Example: MMLU

• ~Most trusted pretraining benchmark

MMLU
[Hendrycks+ 2020]

Evaluation: challenges
22

• Sensitivity to prompting/inconsistencies

Evaluation: challenges
23

• Sensitivity to prompting/inconsistencies

• Train & test contamination (~not important for development)

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

Post-training -> ChatGPT

Data
25

• Idea: use all of the clean internet

• Note: internet is dirty & not representative of what we want. Practice:

1. Download all of internet. Common crawl: 250 billion pages, > 1PB (>1e6 GB)

2. Text extraction from HTML (challenges: math, boiler plate)

3. Filter undesirable content (e.g. NSFW, harmful content, PII)

4. Deduplicates (url/document/line). E.g. all the headers/footers/menu in forums are always same

5. Heuristic filtering. Rm low quality documents (e.g. # words, word length, outlier toks, dirty toks)

6. Model based filtering. Predict if page could be references by Wikipedia.

7. Data mix. Classify data categories (code/books/entertainment). Reweight domains using scaling

laws to get high downstream performance.

• Also: lr annealing on high-quality data, continual pretraining with longer context

Data
26

• Collecting well data is a huge part of practical LLM (~the key)

• Lot of research to be done!

• A lot of secrecy:

• Common academic datasets:

• Closed: LLaMA 2 (2T tokens), LLaMA 3 (15T tokens), GPT-4 (~13T tokens?)

• How do you process well and efficiently?

• How do you balance domains?

• Synthetic data?

• Multi-modal data?

• Competitive dynamics • Copyright liability

• C4 (150B tokens | 800GB)

• The Pile (280B tokens)

• Dolma (3T tokens)

• FineWeb (15T tokens)

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

Post-training -> ChatGPT

Scaling laws
28

• Empirically: more data and larger models => better performance

• Large models =/> overfitting

• Idea: predict model performance based on amount of data & parameter

It works for many things! Scaling laws
[Kaplan+ 2020]

Scaling laws: tuning
29

• You have 10K GPUs for a month, what model do you train?

• Old pipeline:

• Tune hyperparameters on big models (e.g. 30 models)

• Pick the best => final model is trained for as much as each filtered out ones (e.g. 1 day)

• New pipeline:

• Find scaling recipes (eg lr decrease with size)

• Tune hyperparameters on small models of different sizes (e.g. for <3 days)

• Extrapolate using scaling laws to larger ones

• Train the final huge model (e.g. >27 days)

Scaling laws: eg LSTM
30

• Q: Should we use transformers or LSTM?

A: Transformers have a better constant and scaling rate (slope)

Scaling laws
[Kaplan+ 2020]

Scaling laws: eg Chinchilla
31

• Q: How do we optimally allocate training* resources (size vs data)?

Isoflop:
vary tokens &

parameters

A: Use 20:1 tokens for each parameter (20:1)

*doesn’t consider inference cost => in practice use larger (> 150:1)

Chinchilla
[Hoffmann+ 2022]

Isoflop:
vary tokens &

parameters

Best
parameters

for each
isoflop

Best tokens
for each
isoflop

Scaling laws: tuning
32

• Many questions you can try to answer with scaling laws

• Resource allocation:

• Data:

• Algorithm:

• Train models longer vs train bigger models? • Collect more data vs get more GPUs?

• Data repetition / multiple epochs? • Data mixture weighting?

• Arch: LSTMs vs transformers? • Size: width vs depth?

Bitter lesson
33

• Bitter lesson: models improve with scale & Moore’s Law

 => “only thing that matters in the long run is the leveraging of computation.”

 http://www.incompleteideas.net/IncIdeas/BitterLesson.html

• Don’t spend time over complicating: do the simple things and scale them!

Bitter [Sutton 2019]

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Training a SOTA model
34

• Example of current SOTA: LLaMA 3 400B

 Data: 15.6T tokens Parameters: 405B

• FLOPs: 6NP = 6 * 15.6e12 * 405e9 = 3.8 e25 FLOPs

• Compute: 16K H100 with average throughput of 400 TFLOPS

• Time: 3.8e25 / (400e12 * 3600) = 26M GPU hour / (16e3 * 24) = 70 days

• Cost: rented compute + salary=~$2/h*26Mh + 500k/y*50employee= $52M+$25M = ~$75M

• Carbon emitted= 26Mh*0.7kW*0.24kg/kWh = 4400 tCO2eq

• Next model? ~10x more FLOPs

~2x less than executive order

~40 tok/param => train
compute optimal

From paper: ~30M

$65-85M

~2k return tickets JFK-LHR

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

• Systems

Post-training -> ChatGPT

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

• Systems

Post-training -> ChatGPT

• Task

Language Modeling ≠ assisting users
37

• Problem: language modeling is not what we want

Task: “alignment”
38

• Goal: LLM follows user instructions and designer’s desires (eg moderation)

• Background:

• data of desired behaviors is what we want but scarce and expensive

• pretraining data scales but is not what we want

• Idea: finetune pretrained LLM on a little desired data => “post-”training

X

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

• Systems

Post-training -> ChatGPT

• Task

• SFT: data & loss

• Idea: finetune the LLM with language modeling of the desired answers

• How do we collect the data? Ask humans

Supervised finetuning (SFT)
40

Next word prediction “supervised”

OpenAssistant
[Kopf+ 2023]

This was the ~key to GPT3 -> ChatGPT model!

• Problem: human data is slow to collect and expensive

• Idea: use LLMs to scale data collection

Scalable data for SFT: eg Alpaca
41

Started for academic replication of ChatGPT but “synthetic data generation” is now hot topic!

Alpaca
[Taori+ 2023]

• You need very little data for SFT! ~few thousand

• Just learns the format of desired answers (length, bullet points, …)

• The knowledge is already in the pretrained LLM!

• Specializes to one “type of user”

Scalable data for SFT: quantity?
43

LIMA
[Zhou+ 2023]

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

• Systems

Post-training -> ChatGPT

• Task

• SFT: data & loss

• RLHF : data & loss

• Problem: SFT is behavior cloning of humans

1. Bound by human abilities: humans may prefer things that they are not able to generate

2. Hallucination: cloning correct answer teaches LLM to hallucinate if it didn’t know about it!

3. Price: collecting ideal answers is expensive

RL from Human Feedback (RLHF)
45

If LLM doesn’t know [Bivens 2013] => teaches the model to make up plausibly sounding referneces

• Idea: maximize human preference rather than clone their behavior

• Pipeline:

1. For each instruction: generate 2 answers from a pretty good model (SFT)

2. Ask labelers to select their preferred answers

3. Finetune the model to generate more preferred answers

 How??

RLHF
46

Instruction

• Idea: use reinforcement learning

• What is the reward?

• Option 1: whether the model’s output is preferred to some baseline

• Issue: binary reward doesn’t have much information

• Option 2: train a reward model R using a logistic regression loss to classify preferences.

𝑝 𝑖 > 𝑗 =
exp(𝑅(𝑥, ො𝑦𝑖))

exp 𝑅(𝑥, ො𝑦𝑖) + exp 𝑅(𝑥, ො𝑦𝑗)

• Use logits R(…) as reward => continuous information => information heavy!

• Optimize 𝔼 ො𝑦∼𝑝𝜃(ො𝑦|𝑥) 𝑅 𝑥, ො𝑦 − 𝛽 log
𝑝𝜃(ො𝑦|𝑥)

𝑝𝑟𝑒𝑓(ො𝑦|𝑥)
 using PPO

 -> regularization avoids overoptimization

• Note: LMs are policies not a model of some distribution

RLHF: PPO
47

[Bradley-Terry 1952]

RLHF: PPO -> ChatGPT
48

RLHF
[Ouyang+ 2022]

• Problem: RL in theory simple, in practice messy (clipping, rollouts, outer loops,…)

RLHF: PPO challenges
49

Idealized PPO in LM setting

Rollout

AlpacaFarm
[Dubois+ 2023]

• Idea: maximize probability of preferred output, minimize the other

• This is ~equivalent (same global minima) to RLHF/PPO

• Much simpler than PPO and performs as well => standard (in open source community)

RLHF: DPO
50

DPO
[Rafailov+ 2023]

RLHF: gains
51

Learn to summarize
[Stiennon+ 2020]

AlpacaFarm
[Dubois+ 2023]

Pretrain

PPO DPO

SFT

• Data: human crowdsourcing

RLHF: human data
52

guidelines

example

Pretrain Posttrain

LLM Opinions
[Santurkar+ 2023]

Long way to go
[Singhal+ 2024]

• Slow & expensive

• Hard to focus on correctness rather than form (eg length)

• Annotator distribution shifts its behavior

• Crowdsourcing ethics

RLHF: challenges of human data
53

• Idea: replace human preferences with LLM preferences

RLHF: LLM data
54

AlpacaFarm
[Dubois+ 2023]

Works surprisingly well!

=> Standard in open community

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

Post-training -> ChatGPT

• Task

• SFT: data & loss

• RLHF : data & loss

• Evaluation

• How do we evaluate something like ChatGPT?

• Challenges:

• Can’t use validation loss to compare different methods

• Can’t use perplexity: not calibrated

• Large diversity

• Open-ended tasks => hard to automate

• Idea: ask for annotator preference between answers

Evaluation: aligned LLM
56

InstructGPT
[Ouyang+ 2022]

Some aligned
LLMs are policies!

• Idea: have users interact (blinded) with two chatbots, rate which is better.

• Problem: cost & speed!

Human evaluation: eg ChatBot Arena
57

ChatBot Arena
[Chiang+ 2024]

• Idea: use LLM instead of human

• Steps:

• For each instruction: generate output by baseline and model to eval

• Ask GPT-4 which output is better

• Average win-probability => win rate

• Benefits:

• 98% correlation with ChatBot Arena

• < 3 min and < $10

• Challenge: spurious correlation

LLM evaluation: eg AlpacaEval
58

Evaluate

LLM

VS

AlpacaEval
[Li+ 2023]

• e.g. LLM prefers longer outputs

• Possible solution: regression analysis / causal innferece to “control” length

LLM evaluation: spurious correlation
59

AlpacaEval LC
[Dubois+ 2023]

Overview

Pretraining -> GPT3

• Task & loss

• Evaluation

• Data

• Scaling laws

• Systems

Post-training -> ChatGPT

• Problem: everyone is bottlenecked by compute!

• Why not buy more GPUs?

• GPUs are expensive and scarce!

• Physical limitations (eg communication between GPUs)

• => importance of resource allocation (scaling laws) and optimized pipelines

Systems
61

• Massively parallel: same instruction applied on all thread but different inputs.

=> Optimized for throughput!

Systems 101: GPUs
62

SM
Streaming

Multiprocessors

• Massively parallel

• Fast matrix multiplication: special cores >10x faster than other fp ops

Systems 101: GPUs
63

• Massively parallel

• Fast matrix multiplication

• Compute > memory & communication:

• Hard to keep processors fed with data

Systems 101: GPUs
64

DataMovement
[Ivanov+ 2020]

BERT transformer

Matmul

Activation

• Massively parallel

• Fast matrix multiplication

• Compute > memory & communication

• Memory hierarchy:

• Closer to cores => faster but less memory

• Further from cores => more memory but slower

Systems 101: GPUs
65

• Massively parallel

• Fast matrix multiplication

• Compute > memory & communication

• Memory hierarchy

• Metric: Model Flop Utilization (MFU)

• Ratio: observed throughput / theoretical best for that GPU

• 50% is great!

Systems 101: GPUs
66

• Fewer bits => faster communication & lower memory consumption

• For deep learning: decimal precision ~doesn’t matter except exp & updates

• Matrix multiplications can use bf16 instead of fp32

• For training: Automatic Mixed Precision (AMP)

• Weights stored in fp32, but before computation convert to bf16

• Activation in bf16 => main memory gains

• (Only) matrix multiplication in bf16 => speed gains

• Gradients in bf16 => memory gains

• Master weights updated fp32 => full precision

Systems: low precision
68

• Problem:

• communication is slow

• every new PyTorch line moves variables to global memory

• Idea: communicate once

• torch.compile

Systems: operator fusion
69

DRAM SRAM
&

Compute

E.g. assume that thread can only keep 8 values in memory.
Then have to reread all values (no cache hits)!

• Idea: group and order threads to minimize global memory access (slow)

• Eg matrix multiplication

• Compute matrix multiplications in subphases to reuse memory

1. Load M_00 and N_00 tiles into SM

2. Compute partial sums for P

3. Load M_00 and N_20 into SM

4. …

• => reuse reads (~cache)

• T reduction of global reads

Systems: tiling
70

• Idea: kernel fusion, tiling, recomputation for attention!

• 1.7x end to end speed up!

Systems: eg FlashAttention
71

FlashAttention
[Dao+ 2022]

• Problem:

• model very big => can’t fit on one GPU

• Want to use as many GPUs as possible

• Idea: split memory and compute across GPUs

• Background: to naively train a P parameter model you need at least 16P GB of DRAM

• 4P GB for model weights

• 2 * 4P GB for optimizer

• 4P GP for gradients

• E.g. for 7B model you need 112GB!

Systems: parallelization
72

• Goal: use more GPUs

• Naïve data parallelization:

1. Copy model & optimizer on each GPU

2. Split data

3. Communicate and reduce (sum) gradients

• Pro: use parallel GPU

• Con: no memory gains!

Systems: data parallelism
73

• Goal: split up memory

• Idea: each GPU updates subset of weights and them before next step => sharding

Systems: data parallelism
74

ZeRO
[Rajbhandari+ 2019]

• Problem: data parallelism only works if batch size >= # GPUS

• Idea: have every GPU take care of applying specific parameters (rather than updating)

• Eg pipeline parallel: every GPU has different layer

Systems: model parallelism
75

GPipe
[Huang+ 2018]

• Problem: data parallelism only works if batch size >= # GPUS

• Idea: have every GPU take care of applying specific parameters (rather than updating)

• Eg pipeline parallel: every GPU has different layer

• Eg tensor parallel: split single matrix across GPUs and use partial sum

Systems: model parallelism
76

Megatron-LM:
[Shoeybi+ 2019]

• Idea: models are huge => not every datapoint needs to go through every parameter

• Eg Mixture of Experts: use a selector layer to have less “active” parameter => same FLOPs

more parameters

Systems: architecture sparsity
77

Sparse Expert Models:
[Fedus+ 2012]

Wrap-up

Haven’t touched upon:

Going further:

• CS224N: more of the background and historical context. Some adjacent material.

• CS324: more in-depth reading and lectures.

• CS336: you actually build your LLM. Heavy workload!

Outlook
79

• Architecture: MoE & SSM

• Decoding & inference

• UI & tools: ChatGPT

• Multimodality

• Misuse

• Context size

• Data wall

• Legality of data collection

Questions?

	Slide 1: Introduction to Building LLMs
	Slide 2: LLMs
	Slide 3: What matters when training LLMs
	Slide 4: Overview
	Slide 5
	Slide 6: AR Language Models
	Slide 7
	Slide 8: Loss
	Slide 9: Tokenizer
	Slide 10: Tokenizer
	Slide 11: Tokenizer
	Slide 12: Tokenizer
	Slide 13: Tokenizer
	Slide 14: Tokenizer
	Slide 15: Tokenizer
	Slide 16: Overview
	Slide 17: LLM evaluation: Perplexity
	Slide 18: LLM evaluation: Perplexity
	Slide 19: LLM Evaluation: agg. std NLP benchmarks
	Slide 20: LLM Evaluation: agg. std NLP benchmarks
	Slide 21: LLM Evaluation: eg MMLU
	Slide 22: Evaluation: challenges
	Slide 23: Evaluation: challenges
	Slide 24: Overview
	Slide 25: Data
	Slide 26: Data
	Slide 27: Overview
	Slide 28: Scaling laws
	Slide 29: Scaling laws: tuning
	Slide 30: Scaling laws: eg LSTM
	Slide 31: Scaling laws: eg Chinchilla
	Slide 32: Scaling laws: tuning
	Slide 33: Bitter lesson
	Slide 34: Training a SOTA model
	Slide 35: Overview
	Slide 36: Overview
	Slide 37: Language Modeling ≠ assisting users
	Slide 38: Task: “alignment”
	Slide 39: Overview
	Slide 40: Supervised finetuning (SFT)
	Slide 41: Scalable data for SFT: eg Alpaca
	Slide 43: Scalable data for SFT: quantity?
	Slide 44: Overview
	Slide 45: RL from Human Feedback (RLHF)
	Slide 46: RLHF
	Slide 47: RLHF: PPO
	Slide 48: RLHF: PPO -> ChatGPT
	Slide 49: RLHF: PPO challenges
	Slide 50: RLHF: DPO
	Slide 51: RLHF: gains
	Slide 52: RLHF: human data
	Slide 53: RLHF: challenges of human data
	Slide 54: RLHF: LLM data
	Slide 55: Overview
	Slide 56: Evaluation: aligned LLM
	Slide 57: Human evaluation: eg ChatBot Arena
	Slide 58: LLM evaluation: eg AlpacaEval
	Slide 59: LLM evaluation: spurious correlation
	Slide 60: Overview
	Slide 61: Systems
	Slide 62: Systems 101: GPUs
	Slide 63: Systems 101: GPUs
	Slide 64: Systems 101: GPUs
	Slide 65: Systems 101: GPUs
	Slide 66: Systems 101: GPUs
	Slide 68: Systems: low precision
	Slide 69: Systems: operator fusion
	Slide 70: Systems: tiling
	Slide 71: Systems: eg FlashAttention
	Slide 72: Systems: parallelization
	Slide 73: Systems: data parallelism
	Slide 74: Systems: data parallelism
	Slide 75: Systems: model parallelism
	Slide 76: Systems: model parallelism
	Slide 77: Systems: architecture sparsity
	Slide 78: Wrap-up
	Slide 79: Outlook
	Slide 80: Questions?

